On the Routh sphere problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geometry of the Routh Problem

In this paper the motion without sliding of a homogeneous ball on a surface of revolution is studied. It is shown that the necessary condition for stability of stationary periodic motions of the ball obtained by Routh is also a sufficient one. We prove that the nondegenerate invariant manifolds are diffeomorphic to unions of invariant tori filled with quasiperiodic motions.

متن کامل

The Honeycomb Problem on the Sphere

The honeycomb problem on the sphere asks for the partition of the sphere into N equal areas that minimizes the perimeter. This article solves the problem when N = 12. The unique minimizer is a tiling of 12 regular pentagons in the dodecahedral arrangement.

متن کامل

An optimization problem on the sphere

We prove existence and uniqueness of the minimizer for the average geodesic distance to the points of a geodesically convex set on the sphere. This implies a corresponding existence and uniqueness result for an optimal algorithm for halfspace learning, when data and target functions are drawn from the uniform distribution.

متن کامل

The sphere packing problem

Hales, T.C., The sphere packing problem, Journal of Computational and Applied Mathematics 44 (1992) 41-76. The sphere packing problem asks whether any packing of spheres of equal radius in three dimensions has density exceeding that of the face-centered-cubic lattice packing (of density IT/V%). This paper sketches a solution to this problem.

متن کامل

The Sphere-Packing Problem

A brief report on recent work on the sphere-packing problem. 1991 Mathematics Subject Classification: 52C17

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2013

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/46/8/085202